Unlike many other vaccines that contain an infectious pathogen or a part of it, viral vector vaccines use a harmless virus to deliver a piece of genetic code to our cells, allowing them to make a pathogen’s protein. This trains our immune system to react to future infections.
All data and statistics are based on publicly available data at the time of publication. Some information may be out of date.
When we have a bacterial or viral infection, our immune system reacts to molecules from the pathogen. If it is our first encounter with the invader, a finely tuned cascade of processes come together to fight the pathogen and build up immunity for future encounters.
Many traditional vaccines deliver an infectious pathogen or a part of it to our bodies to train our immune system to fight off future exposures to the pathogen.
Viral vector vaccines work differently. They make use of a harmless virus to deliver a piece of genetic code from a pathogen to our cells to mimic an infection. The harmless virus acts as a delivery system, or vector, for the genetic sequence.
Our cells then make the viral or bacterial protein that the vector has delivered and present it to our immune system.
This allows us to develop a specific immune response against a pathogen without the need to have an infection.
However, the viral vector itself plays an additional role by boosting our immune response. This leads to a more robust reaction than if the pathogen’s genetic sequence was delivered on its own.
The Oxford-AstraZeneca COVID-19 vaccine uses a chimpanzee common cold viral vector known as ChAdOx1, which delivers the code that allows our cells to make the SARS-CoV-2 spike protein.
Source: Medical News Today
No comments:
Post a Comment