Thursday 7 July 2022

The heat is on

 They say that where there's smoke, there's fire, and Weizmann Institute of Science researchers are working hard to investigate that claim, or at least elucidate what constitutes "smoke." In an article published today in PNAS, the scientists reveal an advanced, innovative method that they have developed and used to detect nonvisual traces of fire dating back at least 800,000 years -- one of the earliest known pieces of evidence for the use of fire. The newly developed technique may provide a push toward a more scientific, data-driven type of archaeology, but -- perhaps more importantly -- it could help us better understand the origins of the human story, our most basic traditions and our experimental and innovative nature.

The controlled use of fire by ancient hominins -- a group that includes humans and some of our extinct family members -- is hypothesized to date back at least a million years, to around the time that archaeologists believe Homo habilis began its transition to Homo erectus. That is no coincidence, as the working theory, called the "cooking hypothesis," is that the use of fire was instrumental in our evolution, not only for allowing hominins to stay warm, craft advanced tools and ward off predators but also for acquiring the ability to cook. Cooking meat not only eliminates pathogens but increases efficient protein digestion and nutritional value, paving the way for the growth of the brain. The only problem with this hypothesis is a lack of data: since finding archaeological evidence of pyrotechnology primarily relies on visual identification of modifications resulting from the combustion of objects (mainly, a color change), traditional methods have managed to find widespread evidence of fire use no older than 200,000 years. While there is some evidence of fire dating back to 500,000 years ago, it remains sparse, with only five archaeological sites around the world providing reliable evidence of ancient fire.

"We may have just found the sixth site," says Dr. Filipe Natalio of Weizmann's Plant and Environmental Sciences Department, whose previous collaboration with Dr. Ido Azuri, of Weizmann's Life Core Facilities Department, and colleagues provided the basis for this project. Together they pioneered the application of AI and spectroscopy in archaeology to find indications of controlled burning of stone tools dating back to between 200,000 and 420,000 years ago in Israel. Now they're back, joined by PhD student Zane Stepka, Dr. Liora Kolska Horwitz from the Hebrew University of Jerusalem and Prof. Michael Chazan from the University of Toronto, Canada. The team upped the ante by taking a "fishing expedition" -- casting far out into the water and seeing what they could reel back in. "When we started this project," says Natalio, "the archaeologists who've been analyzing the findings from Evron Quarry told us we wouldn't find anything. We should have made a bet."

Source: ScienceDaily

No comments:

Post a Comment