According to long-standing canon in evolutionary biology, natural selection is cruelly selfish, favoring traits that help promote reproductive success. This usually means that the so-called "force" of selection is well equipped to remove harmful mutations that appear during early life and throughout the reproductive years. However, by the age fertility ceases, the story goes that selection becomes blind to what happens to our bodies. After the age of menopause, our cells are more vulnerable to harmful mutations. In the vast majority of animals, this usually means that death follows shortly after fertility ends.
Which puts humans (and some species of whale) in a unique club: animals that continue to live long after their reproductive lives end. How is it that we can live decades in selection's shadow?
"From the perspective of natural selection, long post-menopausal life is a puzzle," said UC Santa Barbara anthropology professor Michael Gurven. In most animals, including chimpanzees -- our closest primate brethren -- this link between fertility and longevity is very pronounced, where survival drops in sync with the ability to reproduce. Meanwhile in humans, women can live for decades after their ability to have children ends. "We don't just gain a few extra years -- we have a true post-reproductive life stage," Gurven said.
In a paper published in the Proceedings of the National Academy of Sciences, senior author Gurven, with former UCSB postdoctoral fellow and population ecologist Raziel Davison, challenge the longstanding view that the force of natural selection in humans must decline to zero once reproduction is complete.
They assert that a long post-reproductive lifespan is not just due to recent advancements in health and medicine. "The potential for long life is part of who we are as humans, an evolved feature of the life course," Gurven said.
The secret to our success? Our grandparents.
"Ideas about the potential value of older adults have been floating around for awhile," Gurven said. "Our paper formalizes those ideas, and asks what the force of selection might be once you take into account the contributions of older adults."
For example, one of the leading ideas for human longevity is called the Grandmother Hypothesis -- the idea that, through their efforts, maternal grandmothers can increase their fitness by helping improve the survival of their grandchildren, thereby enabling their daughters to have more children. Such fitness effects help ensure that the grandmother's DNA is passed down.
"And so that's not reproduction, but it's sort of an indirect reproduction. The ability to pool resources, and not just rely on your own efforts, is a game changer for highly social animals like humans," Davison said.
In their paper, the researchers take the kernel of that idea -- intergenerational transfers, or resource sharing between old and young -- and show that it, too, has played a fundamental role in the force of selection at different ages. Food sharing in non-industrial societies is perhaps the most obvious example.
"It takes up to two decades from birth before people produce more food than they're consuming," said Gurven, who has studied the economy and demography of the Tsimané and other indigenous groups of South America. A lot of food has to be procured and shared to get kids to the point where they can fend for themselves and be productive group members. Adults fill most of this need with their ability to obtain more food than they need for themselves, a provisioning strategy that has sustained pre-industrial societies for ages and also carries over into industrialized societies.
"In our model, the large surplus that adults produce helps improve the survival and fertility of close kin, and of other group members who reliably share their food, too," Davison said. "Viewed through the lens of food production and its effects, it turns out that the indirect fitness value of adults is also highest among reproductive-aged adults. But using demographic and economic data from multiple hunter-gatherers and horticulturalists, we find that the surplus provided by older adults also generates positive selection for their survival. We calculate all this extra fitness in late adulthood to be worth up to a few extra kids!"
Source: ScienceDaily
No comments:
Post a Comment