Friday 29 April 2022

New miniature heart could help speed heart disease cures

 There's no safe way to get a close-up view of the human heart as it goes about its work: you can't just pop it out, take a look, then slot it back in. Scientists have tried different ways to get around this fundamental problem: they've hooked up cadaver hearts to machines to make them pump again, attached lab-grown heart tissues to springs to watch them expand and contract. Each approach has its flaws: reanimated hearts can only beat for a few hours; springs can't replicate the forces at work on the real muscle. But getting a better understanding of this vital organ is urgent: in America, someone dies of heart disease every 36 seconds, according to the Centers for Disease Control and Prevention.

Now, an interdisciplinary team of engineers, biologists, and geneticists has developed a new way of studying the heart: they've built a miniature replica of a heart chamber from a combination of nanoengineered parts and human heart tissue. There are no springs or external power sources -- like the real thing, it just beats by itself, driven by the live heart tissue grown from stem cells. The device could give researchers a more accurate view of how the organ works, allowing them to track how the heart grows in the embryo, study the impact of disease, and test the potential effectiveness and side effects of new treatments -- all at zero risk to patients and without leaving a lab.

The Boston University-led team behind the gadget -- nicknamed miniPUMP, and officially known as the cardiac miniaturized Precision-enabled Unidirectional Microfluidic Pump -- says the technology could also pave the way for building lab-based versions of other organs, from lungs to kidneys. Their findings have been published in Science Advances.

"We can study disease progression in a way that hasn't been possible before," says Alice White, a BU College of Engineering professor and chair of mechanical engineering. "We chose to work on heart tissue because of its particularly complicated mechanics, but we showed that, when you take nanotechnology and marry it with tissue engineering, there's potential for replicating this for multiple organs."

According to the researchers, the device could eventually speed up the drug development process, making it faster and cheaper. Instead of spending millions -- and possibly decades -- moving a medicinal drug through the development pipeline only to see it fall at the final hurdle when tested in people, researchers could use the miniPUMP at the outset to better predict success or failure.

The project is part of CELL-MET, a multi-institutional National Science Foundation Engineering Research Center in Cellular Metamaterials that's led by BU. The center's goal is to regenerate diseased human heart tissue, building a community of scientists and industry experts to test new drugs and create artificial implantable patches for hearts damaged by heart attacks or disease.

"Heart disease is the number one cause of death in the United States, touching all of us," says White, who was chief scientist at Alcatel-Lucent Bell Labs before joining BU in 2013. "Today, there is no cure for a heart attack. The vision of CELL-MET is to change this."

Personalized Medicine

There's a lot that can go wrong with your heart. When it's firing properly on all four cylinders, the heart's two top and two bottom chambers keep your blood flowing so that oxygen-rich blood circulates and feeds your body. But when disease strikes, the arteries that carry blood away from your heart can narrow or become blocked, valves can leak or malfunction, the heart muscle can thin or thicken, or electrical signals can short, causing too many -- or too few -- beats. Unchecked, heart disease can lead to discomfort -- like breathlessness, fatigue, swelling, and chest pain -- and, for many, death.

"The heart experiences complex forces as it pumps blood through our bodies," says Christopher Chen, BU's William F. Warren Distinguished Professor of Biomedical Engineering. "And while we know that heart muscle changes for the worse in response to abnormal forces -- for example, due to high blood pressure or valve disease -- it has been difficult to mimic and study these disease processes. This is why we wanted to build a miniaturized heart chamber."

Source: ScienceDaily

No comments:

Post a Comment